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Does Accelerator-Based Particle Physics
Have a Future? 

• We can't just leave the design of frontier accelerators to the 
specialists. Inventing clever new ideas requires the same 
talents that it takes to do experimental physics. 

Maury Tigner
Physics Today – January 2001

How can we make it work?

Assuming this to be basically correct …



Chris Quigg – Snowmass 2001 closing plenary:



(Chris Quigg) (mine)
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LC time scale

• CDR ~ 2004
• Start constructing components ~ 2005

• RD goal is to 
– reduce cost,
– maximize use of clever ideas, 
– demonstrate feasibility,
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This talk:

• Only suggests the nature of collaborative efforts (phase 
change?)
– Not a set of requisitions carved up in detail

• Does not detail ‘plug and play’ activities
• Is not a ‘status’ update

– Does not detail who is up to what
• Illustrates technologies and hints at opportunities
• is NLC/TESLA/CLIC neutral

• SLC Experience:
• Substantial contributions from collaborators

– especially software
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Limiting LC technology:
• (not including physics of beams)
• gradient & RF power & associated diagnostics
• Low power µwave circuitry
• Lasers
• Positioning/alignment/vibration stabilization
• mm wave & FIR diagnostics
• Data flow – control system
• Radiation effects
• Vacuum
• Feedback
• Engineering – fabrication, packaging, testing
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Sources, Damping Rings, Interaction 
region

• (Broader) range of issues than linac
– Materials science

• photocathode
• positron system
• radiation effects

– Surface science
• secondary emission
• UUHV (1e-12 Torr) – (e.g. Polarized e- RF gun)

– Synchrotron radiation
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R&D Challenges

1. Precision microwave
2. IR final doublet girder (~ internal to detector) 
3. Beam size from optical transition/diffraction radiation
4. Bunch length
5. Storage ring instabilities – electron cloud

– surface physics
6. Radiation modeling
7. Permanent Magnets
8. RF breakdown
9. Control system
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“Precision” microwave

• High power controls and monitoring + position monitors + 
beam phase monitors
– Cavity tuning at TESLA; lorentz force compensation + coupling 

control

• programmed phase control
• external measurements of phase and amplitude

– TESLA Test Facility uses a sequence of stabilization loops and 
associated processors

– NLC/SLC uses thermal stabilized power and phase measurements



DLDS Waveforms with Beam Loading Compensation
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Linac LLRF Drive
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NLC Linac LLRF

Measurement Requirements

10-3 of full scaleAmplitude Resolution

At 11.424 GHz1 degreeBeam phase wrt RF

> 20 dBDynamic Range

At 11.424 GHz1 degreePhase resolution

(!)-40 dBBeam signal / RF 

< 10 nsReflected power detector rise time

Peak< 100 mWReflected power detector max input

10% to 90%< 5nsRise time

at -3 dB> 100 MHzBandwidth

DetailsValueParameter



Author Name
Date

Slide #
15

Accelerator Instrumentation, Controls & Diagnostics
- Marc Ross – SLACApril 8, 2002

CLIC J/NLC TESLA

TTF LLRF Controls
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Final Doublet support girder

• Internal to detector
• Compact Superconducting Quads are the superior 

technology because of their flexibilty and are the most 
likely candidate for the final doublet

• R&D in SC Quads is still in the conceptual state
• SLAC team working with PM
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Development of a transition 
radiation profile monitor -OTR

• some controversy over minimum 
resolvable beam image
– achieved 7µm (12/00) well beyond 

purported limit – OTR provides light at 
very large angles à high resolution

– not like synchrotron light
– smallest OTR spot imaged to date

• theoretical limit: ~ λ

• Parameters for ATF OTR (built at SLAC)
– resolution – 2µm
– field of view – 300 x 200 µm (or ~2x)
– depth of field – 8 µm vertical 

displacement
– OK light for normal camera – 5e9 ppb
– Industrial microscope objective
– 35 mm working distance
– various target materials

SLAC–built very high resolution OTR



OTR images & target damage

successive images illustrating damage:

0.5mm 10 µm σ_y
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Multi-stage compression

Bunch length
• Streak cameras

– resolution limited to ~ 1mm
– space charge, calibration

• Coherent radiation
– stronger signal with shorter beams
– asymmetry difficult (use power spectrum – phase info lost)

• Deflecting RF structures
– promising  à

• Broadband microwave emission
– cheap, relative – a given

• accurate monitor critical for short wave FEL
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LCLS Bunch length monitor

• S-band deflecting TM11 structure

RF Input
Coupler

Beam
Deflection

Irises with
mode-locking
holes
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Transverse RF Cavity for Bunch Length and SliceTransverse RF Cavity for Bunch Length and Slice--Emittance MeasurementsEmittance Measurements
(J. Frisch, X.(J. Frisch, X.--J. Wang, old SLAC ’60s)J. Wang, old SLAC ’60s)
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Storage ring instabilities – electron cloud
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Schematic of electron-cloud build up in the LHC beam pipe.

A diffuse cloud of electrons gathers quickly and surrounds the 
positron (proton) beam. 
Electrons generated by photoelectric/secondary emission

Very serious impact on b-factory / damping ring design and 
operation
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Buildup of electron cloud (Simulation by F. Zimmermann)

Buildup of 
electron cloud 

as a function of 
time

• during bunch train 
passage

• for 3 nominal bunch 
intensities

• (simulation)
• very little done for 

‘direct’ measurements of 
cloud
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Radiation modeling

• Collider single beam power  ~ 14 MW
– (1 Rad/hr ~ 0.3 mW into 1 kg of material)

• Need to model:
– locally installed electronics/plastics radiation dose

• how much local shielding is needed?
• Optics/Lasers/Electronics/HV power supplies/µwave components/?

– material damage from extreme radiation
– background processes for a variety of detectors

• (not limited to IR)
– machine component ‘damage’ processes
– environmental – (NUMI)

e- ↑ prompt ↓ residual
p+ ↓ prompt ↑ residual
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FFTB Single Pulse Damage Coupon Test - front and back side - same scale
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Permanent Magnets

Wedge Magnet

Pole

Pole magnet

Tuning rod

Wedge magnet Tuning Rod

Pole magnet
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RF Breakdown Diagnostics
• Goals:

– Location within mm
– Quantify energy deposition

• Comprehensive recording
– Observe emitted light

• Provide feedback to manufacturing & fabrication process
• Optimize conditioning protocol
• Observations:

– Multi-breakdown events caused by reflection
– Breakdown grouping in time
– Structure damage is not explained by material removed by arc pits 

themselves
– Many (most) structures show enhanced concentration of breakdown in WG 

coupler
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X-band (NLCTA) acoustic emission

• Clearly audible sound from breakdown – heard from n-1 
generation transport components (e.g. flower petal mode 
converter, bends)

• Small, 1MHz bandwidth industrial or homemade sensors
• 10 MHz bandwidth recorders (3 samples/mm)

– Look for start time (TTF) of ‘ballistic phonons’
– or Amplitude (NLCTA)

• Broadband mechanical impulse 
– (2001- limited by sensor performance)
– Typ. λ ~ 7 mm



Acoustic sensor studies of input coupler 
breakdown

Plan views of two input coupler assemblies

T53 VG3 F (KEK; diffusion bonded cell) T53 VG3 RA (SLAC; H2 braze)



Structure input coupler à exactly where are breakdown events?

Cutaway perspective view of VG3RA 
input coupler





Acoustic sensors mounted on  x-band 
structure
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Waterfall Plot of One Event 
Shows saturation (seen after 1/29/02)
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Normalized RMS200

• Signals of a 
certain event-
type are 
normalized 
such that all 
RMS1024 for a 
certain 
channel are 
equal.
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Control system 

• Record (and keep) data from every pulse
– (120 Hz NLC / 3MHz @ 0.5% duty cycle TESLA)
– waveforms, feedback, feedforward

• Real – time pulse to pulse control
– Guaranteed latency
– ‘Machine Protection’ 
– Feedforward from rings

• Feedback
– Measure and correct 

• Sensors and correctors may be miles apart
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Machine Protection System
(control system example)

• Single pulse response
– Sensors on each ‘pulsed’ device
– Prohibit extraction from the ring in case of anomaly
– A huge set of dry contacts is not an appropriate solution

• Software
– Need a fresh idea
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Global Accelerator Network “GAN”

• Proposal to ICFA from Wagner 3/00
– Task force (Astbury/Willeke) report 12/01

• Primary purpose to develop global collaboration for LC 
construction and operation
– (Snowmass 2001 evening plenary)

• Many questions: Will GAN provide à
1. non-host labs with justification for personnel costs?
2. non-host labs with venue for R D?
3. host lab with staff?
4. continuation of involvement following construction

Who benefits from GAN?
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Some GAN opinions - mine (answers?)

• GAN DOES NOT PROVIDE JUSTIFICATION FOR 
NON-HOST LAB STAFFING
– there must also be projects…

• The purpose of GAN is to maintain involvement/demand 
ongoing responsibility of those who built.
– NOT like HERA, PEP2, SNS, LHC….
– Construction proceeds through strong collaboration

• Why do you care?
– How do you see the evolution of your involvement in the LC?
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Example university involvement in NLC RD

• Feedback on nanosecond time scales (Oxford U – Burrows)
– Two students posted at SLAC
– Engineer and one student at Oxford

• Students operate NLCTA & are fully ‘trained’

• If a medieval institution like Oxford U can contribute to LC 
RD then so can you!



Concrete ideas about how to connect 
immediately (George)

1. Precision microwave

2. IR final doublet girder (~ internal to detector) 

3. Beam size from optical transition/diffraction radiation

4. Bunch length

5. Storage ring instabilities – electron cloud

Developed a kind of list – see Tom Himel

Electronics engineering
Calibration, ‘high performance’ mixers
Very similar to precision detector daq.

Mechanical engineering
Magnetics, acoustics
~ similar to VXD supports

Precision optics
Electrodynamics of OTR
VUV/Xray optics

FIR / mm wave optics, 
imaging and calorimetry
Basic EM

Materials science, surface 
science, electron 
detectors/energy analyzer
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6. Radiation modeling

7. Permanent Magnets

8. RF breakdown

9. Control system

Modeling, including known 
radiation effects 
Similar to LHC design work

Mechanical engineering
Field measurements, field 
stability

Instrumentation, microwave, 
acoustic, materials/surface 
science

Large scale software 
engineering, ~ similar to 
detector systems


